Bài 1: Phép biến hình

NN

 Cho hai đường tròn (O;R) và (O’;R’) cùng với hai điẻm A,B . Tìm điểm M trên (O;R) và điểm M’ trên (O’R’) sao cho \(\overrightarrow{MM'}=\overrightarrow{AB}\).

 
PV
14 tháng 4 2016 lúc 11:47

-  Giả sử ta lấy điểm M trên (O;R). Theo giả thiết , thì M’ là ảnh của M qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\). Nhưng do M chạy trên (O;R) cho nên M’ chạy trên đường tròn ảnh của (O;R) qua phép tịnh tiến . Mặt khác M’ chạy trên (O’;R’) vì thế M’ là giao của đường tròn ảnh với đường tròn (O’;R’).

- Tương tự : Nếu lấy M’ thuộc đường tròn (O’;R’) thì ta tìm được N trên (O;R) là giao của (O;R) với đường tròn ảnh của (O’;R’) qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\)

- Số nghiệm hình bằng số các giao điểm của hai đường tròn ảnh với hai đường tròn đã cho . 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết
PB
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết