TA

:Cho nửa đường tròn tâm O đường kính AB = 2R. D là 1 điểm tuỳ ý trên nửa đường tròn (D khác A và D khác B). Các tiếp tuyến với nửa đường tròn (O) tại A và D cắt nhau ở C, BC cắt nửa đường tròn (O) tại điểm thứ hai là E. Kẻ DF vuông góc với AB tại F.

a) Chứng minh: Tứ giác OACD nội tiếp.

b) Chứng minh: CD^2 = CE.CB

c) Chứng minh: Đường thẳng BC đi qua trung điểm của DF.

AT
5 tháng 6 2021 lúc 16:50

a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp

b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)

\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)

c) BC cắt DF tại G.BD cắt AC tại H

Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D

có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH

Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)

mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcmundefined

Bình luận (0)