Ôn tập Đường tròn

TP

Cho nửa đường tròn tâm I đường kính AB. Lấy điểm C thuộc nửa đường tròn và H là hình chiếu của C trên AB. Vẽ đường tròn (C;CH). Vẽ các tiếp tuyến AE và BF với đường tròn (C;CH) sao cho các tiếp điểm E, F không trùng với H.

CMR: a, AE//BF

          b, EA . BF = CH2

            c, EF là tiếp tuyến của đường tròn (I)

 

XO
28 tháng 12 2021 lúc 1:14

Hình tự vẽ

a) BF ; AE tiếp tuyến 

=> \(\widehat{BFE}=\widehat{EFB}=90^{\text{o}}\)

Ta có \(\widehat{BFE}+\widehat{EFB}=180^{\text{o}}\)

=> FB//AE 

b) Xét tam giác vuông ACE ; ACH 

AC2 = AE2 + CE2 = AH2 + HC2 

=> AE = AH (CE = HC)

Tương tự ta có FB = HB

lại có \(\widehat{ACB}=90^{\text{o}}\left(\text{thuộc (I) ; đường kính AB}\right)\)

Xét tam giác vuông ABC vuông tại C ; đường cao AH có

AH.AB = CH2 = AE.FB 

Bình luận (0)
XO
28 tháng 12 2021 lúc 1:25

c) Ta có \(\widehat{ECF}=\widehat{ECA}+\widehat{ACB}+\widehat{FCB}=2\widehat{ACB}=180^o\)

(Vì \(\widehat{ECA}=\widehat{ACH};\widehat{HCB}=\widehat{FCB}\))

=> E;C;F thẳng hàng 

mà EC = CF 

=> C trung điểm EF

mà I trung điểm AB

=> CI đường trung bình hình thang EABF

=> EA//CI//FB

=> \(\widehat{ECI}=90^{\text{o}}\)

=> EF tiếp tuyến (I) 

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
CB
Xem chi tiết
C2
Xem chi tiết
SK
Xem chi tiết
NL
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
LN
Xem chi tiết