1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF
Cho đường tròn O bán kính R, đường kính AB, OC vuông góc vs AB M thuộc nửa đường tròn O , M khác A,B. Tiếp tuyến của nửa đường tròn O tại M cắt OC và tiếp tuyến tại A của nửa đường tròn lần lượt tại D,E, AE cắt BD tại F. Chứng minh EA.EF=R^2
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và góc COD vuông
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Nửa đường tròn (O) đướng kính BC,A thuộc nửa đường tròn đó.AH vuông góc BC(H thuộc BC).Vẽ đường tròn (A;AH) cắt đường tròn (O) tại M và N.Tiếp tuyến của (O) tại A cắt đường tròn (A) lần lượt tại D và E
a,Chứng minh BD,CE là tiếp tuyến (A)
b,MN//DE
c,BD.CE=DE^2/4
d,Tìm A trên nửa (O) sao cho BD.CE lớn nhất
cho nửa đường tròn tâm O bán kính R,đường kính AB từ A và B vẽ 2 tiếp tuyến Ax và By,1 điểm M di động trên nửa đường tròn này vẽ tiếp tuyến tại M cắt Ax và By lần lượt tại C và D.
a)tính góc COD
b)xác định vị trí của M trên nửa đường tròn O sao cho AB+BD nhỏ nhất
giúp mình với
Cho nửa (O;R), đường kính AB, bán kính OC\(⊥\)AB. M là một điểm di động trên nửa đường tròn. Tiếp tuyến của nửa đường tròn tại M cắtt OC tại D và cắt tiếp tuyến tại A của nửa đường tròn tại E. AE cắt BD tại F
a) Chứng minh: EA.EF không đổi
b) AM cắt tiếp tuyến tại B ở E. Chứng minh: OE\(⊥\)BE
Bài 4: Cho nửa đường tròn (O; R) đường kính AB. Điểm C di động trên nửa đường tròn (C khác A, B), gọi M là điểm chính giữa cung AC, BM cắt AC tại H và cắt tia tiếp tuyến Ax của nửa đường tròn (O) tại K, AM cắt BC tại D. a) Chứng minh tứ giác DMHC nội tiếp và HM. HB = HA.HC b) Chứng minh ABD cân đỉnh B c) Chứng minh KD là tiếp tuyến của (B; BA). d) Tứ giác AKDH là hình gì? Vì sao? e) Đường tròn ngoại tiếp BHD cắt đường tròn (B; BA) tại N. Chứng minh A, C, N thẳng hàng.
Cho nửa đường tròn (O) đường kính AB, C là một điểm trên nửa đường tròn và H là chân đường vuông góc hạ từ C xuống AB. Biết CH=4cm và AH=2,3cm.
a. Tính bán kính của nửa đường tròn (O) và CA, CB (làm tròn đến cstp thứ nhất)
b. Tiếp tuyến của (O) tại M cắt tiếp tuyến Ax của (O) tại D,OD cắt AM tại I. Khi M di động trên nửa đường tròn (O) thì điểm I chạy trên đường nào?