Ôn tập Đường tròn

HT

Cho nửa đường tròn (O;R) đường kình AB, M là điểm trên nửa đường tròn, tiếp tuyến tại M cắt hai tiếp tuyến tạ A và B ở C và D a) Chứng minh: CD= AC+BD và tam giác COD vuông  b) Chứng minh: AB là tiếp tuyến của đường tròn đường kính CD. Biết BM=R tính theo R diện tích tam giác ACM

DU
10 tháng 12 2020 lúc 21:22

Kẻ OC và OD

a)Ta có: AC và CM là tiếp tuyến của đường tròn (O), cắt nhau tại C

=>CM=AC (1)  , OC là phân giác của ∠AOM ⇔ ∠AOC= ∠MOC

Lại có:  BD và MD là 2 tiếp tuyến của đường tròn (O), cắt nhau tại D

=> BD=MD(2)  , OD là tia phân giác của ∠BOM ⇔ ∠BOD =∠MOD

Vì ∠AOC+∠COM+∠MOD+∠DOB=∠AOB=180O

Mà ∠AOC=∠COM, ∠MOD=∠DOB

Nên ∠AOC+∠COM+∠MOD+∠DOB=180o

   ⇔ 2∠COM+ 2∠MOD=180o

   ⇔  2(∠COM+ ∠MOD)=180o

   ⇔ ∠COM+ ∠MOD=\(\dfrac{180^0}{2}\)=90o

Vì ∠COD=∠COM+ ∠MOD mà ∠COM+ ∠MOD=90o nên ∠COD=90o =>△COD là tam giác vuông(3)

Từ (1),(2) (3), suy ra:

Trong △COD,có:   CD=CM+MD =AC+BD

Vậy CD=AC+BD (đpcm)

 

b) Lấy I là trung điểm của CD (I ∈ CD) và kẻ OI

Ta có: △COD là tam giác vuông

 Và OI ứng với cạnh huyền CD=> IO=\(\dfrac{CD}{2}\)

=> IO=CI=ID (1) 

Vì AC⊥AB⊥BD nên AC song song với BD

=> ACDB là hình thang vuông(1)

Lại có: I là trung điểm của CD và O là trung điểm của AB

=>OI là đường trung bình của hình thang ACDB(2)

Từ (1) và (2),  suy ra: IO ⊥AB

=> AB là tiếp tuyến của đường tòn đường kính CD (đpcm)

 

 

Bình luận (0)
DU
10 tháng 12 2020 lúc 21:34

O A B M D C I

Bình luận (0)
DU
10 tháng 12 2020 lúc 21:34

O A B M D C I

Bình luận (0)
DU
10 tháng 12 2020 lúc 21:34

O A B M D C I

Bình luận (0)

Các câu hỏi tương tự
LK
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
TL
Xem chi tiết