Ôn thi vào 10

NL

Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F.

1. Chứng minh: góc EOF = 90o

2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng.

3. Gọi K là giao điểm của AF và BE, chứng minh MK vuông góc AB.

AT
4 tháng 7 2021 lúc 9:22

1) Vì EM,EA là tiếp tuyến \(\Rightarrow OE\) là phân giác \(\angle MOA\)

\(\Rightarrow\angle MOE=\dfrac{1}{2}\angle MOA\)

Vì FM,FB là tiếp tuyến \(\Rightarrow OF\) là phân giác \(\angle MOB\)

\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOB\)

\(\Rightarrow\angle MOE+\angle MOF=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)=\dfrac{1}{2}.180=90\)

\(\Rightarrow\angle EOF=90\)

2) Ta có: \(\angle EAO+\angle EMO=90+90=180\Rightarrow AEMO\) nội tiếp

\(\Rightarrow\angle MEO=\angle MAO\)

Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

Xét \(\Delta MAB\) và \(\Delta OEF:\) Ta có: \(\left\{{}\begin{matrix}\angle AMB=\angle EOF\\\angle FEO=\angle MAB\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta OEF\left(g-g\right)\)

Vì \(AE\parallel BF(\bot AB)\) \(\Rightarrow\dfrac{BF}{AE}=\dfrac{FK}{AK}\left(1\right)\)

Vì EM,EA là tiếp tuyến \(\Rightarrow EA=EM\left(2\right)\)

Vì FM,FB là tiếp tuyến \(\Rightarrow FB=FM\left(3\right)\)

Thế (2),(3) vào (1) \(\Rightarrow\dfrac{FM}{EM}=\dfrac{FK}{AK}\Rightarrow\) \(MK\parallel AE\) \(\Rightarrow MK\bot AB\)

undefined

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
X9
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
VN
Xem chi tiết
AQ
Xem chi tiết