HM

cho (n,6)=1.Chứng minh:n^2-1 chia hết cho 24 vơi mọi n thuộc N

HV
9 tháng 2 2020 lúc 11:25

Vì \(\left(n,6\right)=1\Rightarrow n⋮̸̸6\Rightarrow n⋮̸2,⋮̸3̸\)

+)   Vì n không chia hết cho 2 

=> n lẻ => n=2k+1 ( k thuộc Z); 

=> n^2-1 = (2k+1)^2-1= (2k)(2k+2)=4k(k+1) ;

+)    Vì k , k+1 là 2 số nguyên liên tiếp => k(k+1) chia hết cho 2

=> n^2-1 chia hết cho 8 (1)  ( hay cm đc 1 số chính phương lẻ chia 8 dư 1) 

+)    Xét 3 số nguyên liên tiếp n-1,n,n+1 có 1 số chia hết cho 3 mà n không chia hết cho 3

=> n-1 hoặc n+1 chia hết cho 3=> n^2-1 chia hết cho 3 (2) 

+)     Mặt khác (8,3)=1  kết hợp (1),(2)

=> n^2-1 chia hết cho 8.3 hay chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2020 lúc 11:27

n và 6 NTCN => n không chia hết cho 2 và 3

+ Nếu n = 3k+1 (k thuộc N) => n2 -1= (3k+1)2= 9k2+1+6k-1=9k2+6k chia hết cho 3

+ Nếu n = 3k+2 => n2 -1= (3k+2)2= 9k2+4+12k-1=9k2+12k + 3 chia hết cho 3

Vậy n2 - 1 chia hết cho 3 (1)

n không chia hết cho 2 => n có dạng 2m + 1 (m chẵn, m thuộc N)

=> n2-1 = (2m+1)2-1 = 4m2+1 - 1 = 4m2

Mà m chẵn nên 4m2 chia hết cho 8 (2)

Và (3;8) = 1 (3)

(1), (2), (3) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PG
9 tháng 2 2020 lúc 11:40

Vì (n,6) = 1 => n không chia hết cho 2 và 3

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể dưới dạng 3k + 1 hoặc 3k + 2

+) Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j Ta có: n = 3 x 2j + 1 = 6j + 1

Khi đó n2 - 1 = ( 6j + 1 )2 - 1 = 36j2 + 12j = 12j( 3j + 1 )

TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 1 ) = 24t ( 6t + 1 ) chia hết cho 24

TH2: Nếu j lẻ, j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 4 ) = 24 ( 2t + 1 ) ( 3t + 2 ) chia hết cho 24

Vậy n2 - 1 chia hết cho 24

+) Nếu n là 3k + 2 thì n là số lẻ. Đặt k = 2j + 1 => n = 3 ( 2j + 1 ) + 2 = 6j + 5

n2 - 1 = ( 6j + 5 )2 - 1 = 36j2 + 60j + 24 = 12j ( 3j + 5 ) + 24

TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 5 ) = 24t ( 6t + 5 ) chia hết cho 24

TH2: Nếu j lẻ => j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 8 ) = 24 ( 2t + 1 ) ( 3t + 4 ) chia hết cho 24

Vậy n2 - 1 chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
YN
Xem chi tiết
H2
Xem chi tiết
VT
Xem chi tiết
HN
Xem chi tiết
VL
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết