Vì \(\left(n,6\right)=1\Rightarrow n⋮̸̸6\Rightarrow n⋮̸2,⋮̸3̸\)
+) Vì n không chia hết cho 2
=> n lẻ => n=2k+1 ( k thuộc Z);
=> n^2-1 = (2k+1)^2-1= (2k)(2k+2)=4k(k+1) ;
+) Vì k , k+1 là 2 số nguyên liên tiếp => k(k+1) chia hết cho 2
=> n^2-1 chia hết cho 8 (1) ( hay cm đc 1 số chính phương lẻ chia 8 dư 1)
+) Xét 3 số nguyên liên tiếp n-1,n,n+1 có 1 số chia hết cho 3 mà n không chia hết cho 3
=> n-1 hoặc n+1 chia hết cho 3=> n^2-1 chia hết cho 3 (2)
+) Mặt khác (8,3)=1 kết hợp (1),(2)
=> n^2-1 chia hết cho 8.3 hay chia hết cho 24
n và 6 NTCN => n không chia hết cho 2 và 3
+ Nếu n = 3k+1 (k thuộc N) => n2 -1= (3k+1)2= 9k2+1+6k-1=9k2+6k chia hết cho 3
+ Nếu n = 3k+2 => n2 -1= (3k+2)2= 9k2+4+12k-1=9k2+12k + 3 chia hết cho 3
Vậy n2 - 1 chia hết cho 3 (1)
n không chia hết cho 2 => n có dạng 2m + 1 (m chẵn, m thuộc N)
=> n2-1 = (2m+1)2-1 = 4m2+1 - 1 = 4m2
Mà m chẵn nên 4m2 chia hết cho 8 (2)
Và (3;8) = 1 (3)
(1), (2), (3) => đpcm
Vì (n,6) = 1 => n không chia hết cho 2 và 3
n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể dưới dạng 3k + 1 hoặc 3k + 2
+) Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j Ta có: n = 3 x 2j + 1 = 6j + 1
Khi đó n2 - 1 = ( 6j + 1 )2 - 1 = 36j2 + 12j = 12j( 3j + 1 )
TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 1 ) = 24t ( 6t + 1 ) chia hết cho 24
TH2: Nếu j lẻ, j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 4 ) = 24 ( 2t + 1 ) ( 3t + 2 ) chia hết cho 24
Vậy n2 - 1 chia hết cho 24
+) Nếu n là 3k + 2 thì n là số lẻ. Đặt k = 2j + 1 => n = 3 ( 2j + 1 ) + 2 = 6j + 5
n2 - 1 = ( 6j + 5 )2 - 1 = 36j2 + 60j + 24 = 12j ( 3j + 5 ) + 24
TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 5 ) = 24t ( 6t + 5 ) chia hết cho 24
TH2: Nếu j lẻ => j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 8 ) = 24 ( 2t + 1 ) ( 3t + 4 ) chia hết cho 24
Vậy n2 - 1 chia hết cho 24