Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)
Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3
=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6
Ta có:
n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)
Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3
=> n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.
Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.