H24

Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)

\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)

DP
20 tháng 4 2019 lúc 23:11

\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)

Bình luận (0)
H24
18 tháng 11 2019 lúc 22:40

Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013

NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )

P/S:Xin đừng bốc phốt.

Để ý trong 2 số thực x,y bất kỳ luôn có 

\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)

Ta có:

\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)

\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)

\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)

\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LD
Xem chi tiết
NL
Xem chi tiết
LD
Xem chi tiết
SN
Xem chi tiết
HP
Xem chi tiết
SN
Xem chi tiết
TN
Xem chi tiết
HP
Xem chi tiết
DH
Xem chi tiết