Chứng tỏ nó bằng 1?!
Bg
Ta có: ƯCLN (3n + 2; 2n + 1) (n \(\inℕ\))
Gọi ƯCLN (3n + 2; 2n + 1) là d (d \(\inℕ^∗\))
Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d
=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d
=> 6n + 4 - (6n + 3) \(⋮\)d
=> 6n + 4 - 6n - 3 \(⋮\)d
=> (6n - 6n) + (4 - 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy ƯCLN (3n + 2; 2n + 1) = 1