Do n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
=>n=3k+1 hoặc a=3k+2 (k khác 0)
Xét n=3k+1
=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)
Xét n=3k+2
=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3) (2)
(1)(2)=>n^2 là số nguyên tố
Vì n > 3 nên n có dạng 3k+1 và 3k+2.
TH1: nếu n có dạng 3k+1 thì:
n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015
Vì 9k.3k chia hết cho 3
3k chia hết cho 3
2015 không chia hết 3
=> n^2+2015 là số nguyên tố.
TH2:nếu n có dạng 3k+2 thì:
n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019
Vì 9k^2 chia hết cho 3
12k chia hết cho3
2019 chia hết cho 3
=>n^2+2015 là hợp số
Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.
nếu n có dạng 3k+2 thì n^2+2015 là hợp số.
k cho mk nha bạn