Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3
TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2 +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số
TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số
Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3
n là số nguyên tố lớn hơn 3
Suy ra n không vhia hết cho 3
Suy ra n chia cho 3 dư 1 hoặc n chia cho 3 dư 2
* Nếu n : 3 dư 1
Suy ra n2 : 3 dư 1
* Nếu n : 3 dư 2
Suy ra n2 : 3 dư 1
Suy ra n2 : 3 dư 1 với mọi n là số nguyên tố lớn hơn 3
Suy ra n2 = 3k + 1 ( k thuộc N ; k lớn hon hoặc bằng )
Ta có n2 + 2006
= 3k + 1 +2006
= 3k + 2007
vì 3k chia hết cho 3
2007 chia hết cho 3
Suy ra n2 + 2006 chia hết cho 3
Suy ra n2 + 2006 là hợp số
n là số nguyên tố lớn hơn 3 nên ko chia hết cho 3
n2 chia cho 3 dư 1 tức là n2= 3k+1
Do đó n2+2006 = 3k+1+2006 =3k+2007 thì chia hết cho 3
Vậy n2+2006 là hợp số