\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)
\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)
\(\Leftrightarrow a.10^n+b=c^2.11...1\)
\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\)))
\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)
Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số:
\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)
Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).
Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\).
Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả.
\(\overline{aa...abb...b}+1=\left(cc...c+1\right)^2\)
\(\Leftrightarrow a.k.10^n+b.k+1=\left(c.k+1\right)^2,k=11...1\)
\(\Leftrightarrow ak.\left(9k+1\right)+bk=c^2k^2+2ck\)
\(\Leftrightarrow a\left(9k+1\right)+b=c^2k+2c\)
\(\Leftrightarrow k\left(9a-c^2\right)=2c-b-a\)
Đẳng thức trên đúng với mọi \(k\inℕ^∗\)nên \(\hept{\begin{cases}9a-c^2=0\\2c-a-b=0\end{cases}}\)
Từ \(9a-c^2=0\)ta có các trường hợp \(\left(a,c\right)\in\left\{\left(1,3\right),\left(4,6\right),\left(9,9\right)\right\}\).
Kết hợp với \(2c-a-b=0\)ta có các trường hợp sau thỏa mãn: \(\left(a,b,c\right)\in\left\{\left(1,5,3\right),\left(4,8,6\right),\left(9,9,9\right)\right\}\).
Ơ k=111...1 mà sao lại xét k=1 hả bạn
Bạn giúp mình câu này được không
Với mọi n nguyên dương tìm a,b,c đẻ:
aaaa....bbbbb+1=(ccc..c+1)2