đềbài sai hay sao vậy bạn, nếu n=1 => ..=2 chia hết cho 25 ???
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
đềbài sai hay sao vậy bạn, nếu n=1 => ..=2 chia hết cho 25 ???
Chuyên sư phạm Hà Nội (2014)
3. Chứng minh rằng với mọi số nguyên dương n\(\ge\)6 thì số:
\(a_n=1+\frac{2.6.10...\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}\) là 1 số chính phương
Cho n là số nguyên dương lớn hơn 1. Chứng minh rằng:
\(\frac{1}{n!}< \left(2-\frac{1}{n}\right)\left(2-\frac{3}{n}\right)...\left(2-\frac{2n-1}{n}\right)\)
Với mỗi số nguyên dương n. Chứng minh rằng :
\(\left(3+\sqrt{5}\right)^n\)+\(\left(3-\sqrt{5}\right)^n\)là một số nguyên dương,
Cho n là số nguyên dương. Chứng minh rằng: 2n+1 và 3n+1 là các số chính phương thì 5n+3 không là số nguyên tố.
Chứng minh rằng: \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\) ( n là số nguyên dương)
Với mọi số nguyên dương n. Chứng minh\(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\) là số nguyên dương
Với mọi số nguyên dương n, chứng minh \(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\)là số nguyên dương
Với mỗi số nguyên dương n chứng minh \(\left(3+\sqrt{5}\right)^n+^{ }\left(3-\sqrt{5}\right)^{^{ }n}\)là số nguyên dương
Với mỗi số nguyên dương n; chứng minh \(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\) là số nguyên dương
cảm ơn nhiều ^^