Cho n là số tự nhiên chẵn. CMR \(n^3-4n\)và \(n^3+4n\)
\(n^4-4n^3-4n^2+16n\) chia hết cho 384 với mọi số tự nhiên chẵn và \(n\ge4\)
CMR: với mọi số nguỵên n chẵn và lớn hơn 4 thì:
\(n^4-4n^3-4n^2+16n\) chia hết cho 384
Đây là toán lớp 10, bạn nào làm được làm giúp mình với, chứng minh xuôi ngược luôn nha, làm ơn giúp mình trước thứ 7
Bài 1: Cho n là số tự nhiên
a) n lẻ <=> (n^2 + 7 ) chia hết cho 8
b) n chẵn <=> ( n^3 - 4n ) chia hết cho 48
c) n lẻ <=> ( n^2 - 4n +3 ) chia hết cho 8
d) n lẻ <=> (n^2 + 4n + 5 ) không chia hết cho 8
Bài 2: chứng minh rằng 1 trong 2 phương trình sau có nghiệm
x^2 - 2mx - 2m + 2 = 0 (1)
x^2 + ( m - 1)x + m - 1 = 0 (2)
Giả sử n là số tự nhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chính phương
Tìm số tự nhiên n để 3n+4n+1 chia hết cho 10
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n
3 − 5n − 1 không là số chính phương.
Xl vì táu ngu :<
Cmr (2^3^4n+1) + 3 chia hết cho 11 với n thuộc N.