TH

Cho n là một số nguyên dương thỏa mãn n+1 và 2n+1 đồng thời là 2 số chính phương(số chính phương là bình phương của 1 số nguyên ) CMR: n chia hết 24

MN
22 tháng 1 2015 lúc 22:29

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

Bình luận (0)
CS
21 tháng 6 2020 lúc 21:24

ùi hơi khó thế này thì có làm đc ko

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DL
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
QH
Xem chi tiết
ND
Xem chi tiết
BA
Xem chi tiết
LP
Xem chi tiết
KB
Xem chi tiết
QD
Xem chi tiết