Đặt A = n(n+1)(2n+1)
+ n = 2k => A chia hết cho 2
+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2
Vậy A luôn chia hết cho 2 (1)
+n=3k => A chia hết cho 3
+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1) chia hết cho 3=> A chia hết cho 3
+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3
Vậy A luôn chia hết cho 3 (2)
Từ (1);(2) => A chia hết cho 2.3 =6 Với mọi n thuộc N
+ Nếu n chia hết cho 3 thì n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3 với mọi n.
Ta lại thấy n(n + 1) là tích 2 số liên tiếp => chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2.
=> n(n+1)(2n+1) chia hết cho 2 và 3 => n(n+1)(2n+1) chia hết cho 6 (Vì ƯCLN(2; 3) = 6)