NH

Cho n \(\in\) N. Chứng minh rằng  : n(n+1)(2n+1) chia hết cho 6

ND
8 tháng 11 2015 lúc 21:54

Đặt A = n(n+1)(2n+1) 

+ n = 2k  => A chia hết cho 2

+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2

Vậy A luôn chia hết cho 2                (1)

+n=3k  => A chia hết cho 3

+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1)  chia hết cho 3=> A chia hết cho 3

+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3

Vậy A luôn chia hết cho 3            (2)

Từ (1);(2) =>  A chia hết cho 2.3 =6  Với mọi n thuộc N

Bình luận (0)
NK
8 tháng 11 2015 lúc 21:53

+ Nếu n chia hết cho 3 thì  n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3 

+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3

=>  n(n+1)(2n+1) chia hết cho 3 với mọi n.     

Ta lại thấy n(n + 1) là tích 2 số liên tiếp => chia hết cho 2 =>  n(n+1)(2n+1) chia hết cho 2.

=>  n(n+1)(2n+1) chia hết cho 2 và 3 =>  n(n+1)(2n+1) chia hết cho 6 (Vì ƯCLN(2; 3) = 6)

Bình luận (0)
GP
21 tháng 1 2021 lúc 15:43

I saw you

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 2 2022 lúc 15:18

Mẹ cha lũ óc chó

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
QN
Xem chi tiết
DD
Xem chi tiết
ND
Xem chi tiết
VH
Xem chi tiết