Ta có ab + ba
= 10a + b +10b + a
= 10(a+b) + (a+b) chia hết cho (a+b)
Ta có : \(ab+ba\)
\(=10a+b+10b+a\)
\(=10\left(a+b\right)+\left(a+b\right)⋮\left(a+b\right)\)
\(\Leftrightarrow ab+ba⋮\left(a+b\right)\)
Vậy..........
Ta có ab + ba
= 10a + b +10b + a
= 10(a+b) + (a+b) chia hết cho (a+b)
Ta có : \(ab+ba\)
\(=10a+b+10b+a\)
\(=10\left(a+b\right)+\left(a+b\right)⋮\left(a+b\right)\)
\(\Leftrightarrow ab+ba⋮\left(a+b\right)\)
Vậy..........
Cho một số có hai chữ số có dạng ab .Chứng tỏ rằng ab+ba chia hết a+b
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
Cho 1 số có 2 chữ số có dạng ab
a. Chứng minh rằng tổng ab + ba thì chia hết cho tổng a + b
b. Chứng minh rằng hiệu ab - ba thì chia hết cho hiệu a - b, với a>b
a)Tổng của ba số tự nhiên liên tiếp có chia hết cho 3?
b) chứng tỏ rằng tích của hai số tự nhiên liên tiếp có chia hết cho 2
c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.
d) chứng tỏ rằng tổng ab + ba chia hết cho 11
1. chứng tỏ rằng
a, trong 2 số tự nhiên liên tiêp có một chữ số chia hết cho 2.
b, trong 3 số tự nhiên liên tiếp có một chữ số chia hết cho3
c, trong 4 số tự nhiên liên tiếp có một chữ số chia hết cho 4
từ đó rút ra tổng quát gì
2. chứng tỏ rằng
a, tổng của 2 số tự nhiên liên tiếp thì ko chia hết cho 2
b, tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3
3. chứng tỏ rằng
a, số có dạng aaa chia hết cho 37
b, hiệu của số có dang là ( aaa -bbb) : 37 ( a > b hoặc a = b)
mik dag can gap mog cac bn giup do
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
a) Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
b) Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
c)Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm 2 chữ số ấy viết theo thứ tuwjnguwowcj lại, ta luôn được một số chia hết cho 11
bài 1:Chứng tỏ rằng
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
bài 2 : chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7
bài 3 : chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
bài 4 : chứng tỏ rằng lấy một số có hai chữ số , cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn đc một số chia hết cho 11
Lưu ý: bạn nào trả lời xong 4 bài trên chính xác và làm xong đầu tiên sẽ đc like.
* Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng aaaaaa bao giờ cũng chia hết cho 3.
c) Số có dạng abcabc bao giờ cũng chia hết cho 13 và 11.
d) ( ab+ ba) chia hết 11