Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ một góc 45°. Tính thể tích của khối trụ.
A. πa 3 2 16
B. πa 3 2 4
C. πa 3 2 2
D. 3 πa 3 2 16
Cho hình trụ và hình vuông ABCD có cạnh a. Hai đỉnh liên tiếp A,B nằm trên đường tròn đáy thứ nhất và hai đỉnh còn lại nằm trên đường tròn đáy thứ hai, mặt phẳng (ABCD) tạo với đáy một góc 45 ° . Khi đó thể tích khối trụ là
A. π a 3 2 8 .
B. 3 π a 3 2 8 .
C. π a 3 2 16 .
D. 3 π a 3 2 16 .
Cho hình nón tròn xoay (N) có đỉnh S và đáy là hình tròn tâm O bán kính r nằm trên mặt phẳng (P) đường cao SO=h Điểm O’ thay đổi trên đoạn SO sao cho SO’=x (0<x<h). Hình trụ tròn xoay (T) có đáy thứ nhất là hình tròn tâm O bán kính r’ (0<r’<r) nằm trên mặt phẳng (P), đáy thứ hai là hình tròn tâm O’ bán kính r’ nằm trên mặt phẳng (Q), (Q) vuông góc với SO tại O’ (đường tròn đáy thứ hai của (T) là giao tuyến của (Q) với mặt xung quanh của (N). Hãy xác định giá trị của x để thể tích phần không gian nằm phía trong (N) nhưng phía ngoài của (T) đạt giá trị nhỏ nhất.
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 2a. Một hình trụ có hai đáy là hai hình tròn nội tiếp trong hai hình vuông ABCD và A’B’C’D’. Tính thể tích của khối lăng trụ tạo nên từ hình trụ trên.
A. 2 π a 3 .
B. π a 3 .
C. 2 2 π a 3 .
D. 4 π a 3 .
Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).
Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Cho hình lập phương ABCD.A’B’C’D’. Gọi O, O’ lần lượt là tâm của hai hình vuông ABCD và A’B’C’D’. Gọi V1 là thể tích của khối trụ xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A’B’C’D’, V2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A’B’C’D’. Tỷ số thể tích V 1 V 2 là
A. 4
B. 8
C. 6
D. 2
Cho hình trụ có bán kính r và có chiều cao cũng bằng r. Hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD không phải là đường sinh của hình trụ. Tính diện tích của hình vuông đó và côsin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy.
Cho hình trụ có tâm hai đáy lần lượt là O và O'; bán kính đáy hình trụ bằng a. Trên hai đường tròn (O) và (O') lần lượt lấy hai điểm A và B sao cho AB tạo với trục của hình trụ một góc 30 ° và có khoảng cách tới trục của hình trụ bằng a 3 2 . Tính diện tích toàn phần của hình trụ đã cho
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R 3 Hai điểm A,B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30 ° . Khoảng cách giữa AB và trục của hình trụ bằng: