\(x^2+5x+5=0\)
\(\Leftrightarrow x^2+\frac{5+\sqrt{5}}{2}x+\frac{5-\sqrt{5}}{2}+\left(\frac{5+\sqrt{5}}{2}×\frac{5-\sqrt{5}}{2}\right)\)
\(\Leftrightarrow x\left(x+\frac{5+\sqrt{5}}{2}\right)+\frac{5-\sqrt{5}}{2}\left(x+\frac{5+\sqrt{5}}{2}\right)\)
\(\Leftrightarrow\left(x+\frac{5-\sqrt{5}}{2}\right)\left(x+\frac{5+\sqrt{5}}{2}\right)\)
\(\Rightarrow\hept{\begin{cases}x+\frac{5-\sqrt{5}}{2}=0\\x+\frac{5+\sqrt{5}}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}}\)
\(x^2+5x+5=0\)
Ta có: \(\Delta=5^2-4.5=5,\sqrt{\Delta}=\sqrt{5}\)
Vậy pt có 2 nghiệm
\(x_1=\frac{-5+\sqrt{5}}{2}\);\(x_2=\frac{-5-\sqrt{5}}{2}\)