C2

Cho M=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

So sanh M vs 1/2

2U
18 tháng 12 2019 lúc 13:00

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}.\frac{2018}{2019}\)

\(=\frac{2018}{4038}\)

\(\Rightarrow\frac{2018}{4038}< \frac{1}{2}\)( lấy máy tính ) 

Bình luận (0)
 Khách vãng lai đã xóa
HN
18 tháng 12 2019 lúc 13:04

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2017.2019}\)

\(\Rightarrow M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)

\(\Rightarrow M=1-\frac{1}{2019}\)

\(\Rightarrow M=\frac{2019}{2019}-\frac{1}{2019}\)

\(\Rightarrow M=\frac{2018}{2019}\)

Có \(\frac{2018}{2019}=\frac{2018.2}{2019.2}=\frac{4036}{4038}\)

\(\frac{1}{2}=\frac{1.2019}{2.2019}=\frac{2019}{4038}\)

Mà \(\frac{4036}{4038}< \frac{2019}{4038}\Rightarrow M< \frac{1}{2}\)

Vậy M < \(\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết
TA
Xem chi tiết
BN
Xem chi tiết
TV
Xem chi tiết
SS
Xem chi tiết