Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho điểm $M$ bất kì nằm trong $\Delta ABC$. Qua $M$ kẻ $DE//BC,FG//AB,IJ//AC$ với \((G,J\in BC;E,F\in AC;D,I\in AB)\)
Chứng minh rằng \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le \dfrac{2}{3}S_{ABC}\)
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)
Cho tam giác ABC, điểm D thuộc cạnh AB, E thuộc cạnh AC. Gọi I, M lần lượt là trung điểm của DE, BC. Đường thẳng qua I và song song với AB cắt MD ở G. Đường thẳng qua I song song với AC cắt ME ở H. Chứng minh GH//BC.
Help me!!
qua điểm I nằm trong tam giác ABC,dựng 3 đường thẳng song song với các cạnh của tam giác,DE song song BC;MN song song CA;PQ song song AC(D,M thuộc AB;N,P thuộc BC;E,Q thuộc AC.chứng minh BD/BA+AQ/AC+CN/CB=1
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác ABC có đường tròn nội tiếp (I), tiếp xúc với các cạnh BC,C A,AB theo thứ tự tại D,E,F. Đường thẳng qua A song song với BC cắt DE,DF thứ tự tại P,Q.
a) Chứng minh rằng A là trung điểm của PQ.
b) Chứng minh rằng trực tâm của tam giác DPQ nằm trên (I).
c) Gọi M là trung điểm EF. Chứng minh \(\widehat{PMQ}\) là góc tù.
Idol nào zô làm cái
Cho tam giác ABC, P là điểm bất kỳ trong tam giác. AP, BP, CP lần lượt cắt BC, CA, AB tại D, E, F. M, N,P lần lượt đối xứng với D,E,F qua trung điểm của các cạnh BC, CA, AB. CMR AM, BN, CP đồng quy Dùng menelaus và ceva nhé! MỌI NGƯỜI GIÚP EM NHANH
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF