\(M=2+2^2+2^3+...+2^{20}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{19}+2^{20})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{18}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{18}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{18})\)
Vì \(6\cdot(1+2^2+2^4+...+2^{18})\vdots6\)
nên \(M\vdots6\)
Vậy \(M\vdots6\).