Ta có :
\(\frac{1}{50}>\frac{1}{100}\)
\(\frac{1}{51}>\frac{1}{100}\)
............
\(\frac{1}{98}>\frac{1}{100}\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{50}+\frac{1}{51}+....+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}=\frac{50.1}{100}=\frac{1}{2}\)
\(\Rightarrow M>\frac{1}{2}\)
Ta có: \(\frac{1}{50}>\frac{1}{51}>....>\frac{1}{99}\)
\(\Rightarrow M>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)
Vậy M > 1/2
Ta có :
M = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{98}+\frac{1}{99}\)
M > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)( 50 số hạng )
\(=\frac{1}{100}.50=\frac{1}{2}\)
Vậy M > \(\frac{1}{2}\)