Ta có M có (100-1):1+1=100 số hạng
\(M=1+\left(3+3^2+3^3\right)+....+\left(3^{98}+3^{99}+3^{100}\right)\)
\(M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(M=1+3.13+...+3^{98}.13\)
\(M=1+13\left(3+...+3^{98}\right)\)
Mà 13(3+...+398) chia hết cho 13
=> M chia 13 dư 1
\(\Rightarrow\)M chia 40 du 1
sdvsvbdsjhfsdsvzchjfdjhsabvbhsvdhsvxBZjaghstwfadvszhxstfrszvcgzsftfshzvgsfdsh