PB

Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân, AB = AC = a, B A C ^ = 120 ° . Mặt phẳng (AB’C’) tạo với đáy góc 60 ° . Tính khoảng cách từ đường thẳng BC đến mặt phẳng (AB’C’) theo a.

A.a/3

B.  a 3 4

C.  a 3 8

D. 5 a 3

CT
15 tháng 12 2017 lúc 16:08

+ Gọi M là trung điểm của B’C’

Tam giác AB’C’ cân tại A ⇒ AM ⊥ B’C’

Tam giác A’B’C’ cân tại A’A’M B’C’

Mà (AB’C’) ∩  (A’B’C’) = B’C’

Do đó góc giữa hai mặt phẳng (AB’C’) và (A’B’C’) là góc giữa 2 đường thẳng AM và A’M và chính là góc AMA’ ⇒ A M A ' ^ = 60 °  

Ta có: A’M = 1/2 A’C’ = a/2 ⇒  AA’ = A’M. tan 60 ° =  a 3 2

+ Ta có BC // (AB’C’) ⇒ d(BC; (AB’C’)) = d(B; (AB’C’))

Ta chứng minh được d(B; (AB’C’)) = d(A’; (AB’C’))

Do đó: d(BC; (AB’C’)) = d(A’; (AB’C’))

+ Ta chứng minh được (AA’M) ⊥ (AB’C’), trong mặt phẳng (AA’M), dựng A’H  ⊥  AM tại H

⇒ A’H  ⊥ (AB’C’) d(A’; (AB’C’)) = A’H ⇒  d(BC; (AB’C’)) = A’H

+ Tính A’H

Ta có: 1 A ' H 2 = 1 A A ' 2 + 1 A ' M 2 A’H =  a 3 4

Vậy d(BC; (AB’C’)) = a 3 4 .

Đáp án B

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết