PB

Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng a. Các điểm EF lần lượt là trung điểm của C’B’C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể tích khối chứa điểm A’ V 2 là thể tích khối chứa điểm C’. Khi đó V 1 V 2  là

A. 25 47 .

B.1

C. 17 25 .

D. 8 17 .

CT
5 tháng 11 2018 lúc 3:53

Đáp án A.

Đường thẳng EF cắt A'D' và A'B' tại N;M;AN cắt DD' tại P;AM cắt BB' tại Q. Khi đó thiết diện của hình lập phương khi cắt bởi mặt phẳng (AEF) là ngũ giác APFEQ

Từ giả thiết ta có V 1 = V A ' B ' D ' A P F E Q  và  V 2 = V A B C D C ' P F E Q ' .

Gọi

V = V A B C D . A ' B ' C ' D ' ; V 3 = V A . A ' M N ; V 4 = V P F D ' N ; V 5 = V Q M B ' E .  

Do tính đối xứng của hình lập phương nên V 4 = V 5  .

Nhận thấy

V 3 = 1 6 A A ' . A ' M . A ' N = 1 6 . a . 3 a 2 . 3 a 2 = 3 a 2 8  (đvtt).

V 4 = 1 6 . D ' P . D ' F . D ' N = 1 6 . a 3 . a 2 . a 2 = a 3 72  (đvtt);

V 1 = V 3 − 2 V 4 = 3 a 3 8 − 2. a 3 72 = 25 a 3 72  (đvtt).

V 2 = V − V 1 = a 3 − 25 a 3 72 = 47 a 3 72  (đvtt).

Vậy   V 1 V 2 = 25 47 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết