Chọn D.
Phương pháp:
Lập tỉ số thể tích khối tứ diện ABCM và khối lăng trụ ABC.A’B’C’. Từ đó tính thể tích khối tứ diện ABCM.
Cách giải:
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chọn D.
Phương pháp:
Lập tỉ số thể tích khối tứ diện ABCM và khối lăng trụ ABC.A’B’C’. Từ đó tính thể tích khối tứ diện ABCM.
Cách giải:
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng 72 c m 3 . Gọi M là trung điểm của đoạn thẳng BB'. Tính thể tích của khối tứ diện ABCM
A.12 c m 3
B. 36 c m 3
C. 18 c m 3
D. 24 c m 3
Cho hình lăng trụ ABC.A’B’C’ có thể tích bằng V. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, A’C’, BB’. Thể tích của khối tứ diện CMNP bằng
A. 5 24 V
B. 1 4 V
C. 7 24 V
D. 1 3 V
Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B, kéo dài lấy điểm M sao cho B’M = 1 2 A’B’. Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứa đỉnh A’ có thể tích V1 và khối đa diện chứa đỉnh C’ có thể tích V2 . Tính V 1 V 2
A. V 1 V 2 = 97 59
B. V 1 V 2 = 49 144
C. V 1 V 2 = 95 144
D. V 1 V 2 = 49 95
Cho lăng trụ ABC.A’B’C’ có thể tích bằng 72. Gọi M là trung điểm cạnh A’B’; các điểm N, P thỏa mãn B ' N ⇀ = 3 4 B ' C ' ⇀ ; B P ⇀ = 1 4 B C ⇀ Đường thẳng NP cắt BB’ tại E; đường thẳng ME cắt AB tại Q. Thể tích khối đa diện ACPQA'C'NM bằng
A. 55
B. 59
C. 52
D. 56
Cho hình lăng trụ ABC.A’B’C’, trên các cạnh AA’, BB’ lấy các điểm M, N sao cho AA'=4A'M , BB'=4B'N Mặt phẳng (C'MN) chia khối lăng trụ thành hai phần. Gọi V 1 là thể tích khối chóp C’.A’B’MN và V 2 là thể tích khối đa diện ABCMNC’. Tính tỷ số V 1 V 2
A. V 1 V 2 = 1 5
B. V 1 V 2 = 4 5
C. V 1 V 2 = 2 5
D. V 1 V 2 = 3 5
Cho hình lăng trụ ABC.A’B’C’, M là trung điểm của CC’. Mặt phẳng (ABM) chia khối lăng trụ thành hai khối đa diện. Gọi V 1 là thể tích khối đa diện chứa đỉnh C và V 2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2
A. 2 5
B. 1 6
C. 1 2
D. 1 5
Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 1. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AA¢ và BB¢. Đường thẳng CM cắt đường thẳng C’A¢ tại P, đường thẳng CN cắt đường thẳng C‘B¢ tại Q. Thể tích của khối đa diện lồi A’MPB’NQ bằng
A. 1
B. 1 3
C. 1 2
D. 2 3
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, AA'=a, B A C ^ = 30 0 , A B = a 3 . Gọi M là trung điểm của BB'. Tính theo a thể tích V của khối tứ diện MACC'
A. V = a 3 3 12
B. V = a 3 3 4
C. V = a 3 3 3
D. V = a 3 3 18
Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 2018. Gọi M là trung điểm AA’; N, P lần lượt là các điểm nằm trên các cạnh BB’, CC’ sao cho B N = 2 B ' N , C P = 3 C ' P . Tính thể tích khối đa diện ABCMNP
A. 4036 3
B. 32288 27
C. 40360 27
D. 23207 18