\(K=\frac{4n+7}{n-3}\inℕ\Leftrightarrow4n+7⋮n-3\)
\(\Rightarrow4n-12+19⋮n-3\)
\(\Rightarrow4\left(n-3\right)+19⋮n-3\)
\(4\left(n-3\right)⋮n-3\)
\(\Rightarrow19⋮n-3\)
\(\Rightarrow n-3\inƯ\left(19\right)=\left\{1;19\right\}\)
\(\Rightarrow n\in\left\{4;22\right\}\)
vậy_
K = \(\frac{4n-12}{n-3}+\frac{19}{n-3}\)
=> Để K thuộc N thì 19 chia hết cho n-3 hay n-3 thuộc Ư(19) = (1;-1;19;-19)
n-3 | -1 | 1 | -19 | 19 |
n | 2 | 4 | -16 | 22 |
K | -15 | 23 | 3 | 5 |
Vậy để K thuộc N thì n = 4; -16; 22
\(K=\frac{4n+7}{n-3}\in N\Leftrightarrow4n+7⋮n-3\)
\(\Leftrightarrow4n-12+19⋮n-3\)
\(\Leftrightarrow4\left(n-3\right)+19⋮n-3\)
\(\Leftrightarrow4\left(n-3\right)⋮n-3\)
\(\Leftrightarrow19⋮n-3\)
\(\Leftrightarrow n-3\inƯ_{\left(19\right)}=\left\{1;19\right\}\)
\(\Leftrightarrow n\in\left\{4;22\right\}\)
Code : Breacker
Để K thuộc N thì 4N+ 7\(⋮\) N- 3.
Ta có: 4N+ 7\(⋮\) N- 3.
Mà: N- 3\(⋮\) N- 3=> 4( N- 3)\(⋮\) N- 3=> 4N- 12\(⋮\) N- 3.
=>( 4N+ 7)-( 4N- 12)\(⋮\) N- 3.
=> 4N+ 7- 4N+ 12\(⋮\) N- 3.
=> 19\(⋮\)N- 3.
=> N- 3\(\in\) Ư( 19).
=> N- 3\(\in\){ -19; -1; 1; 19}.
=> N\(\in\){ -16; 2; 4; 22}
Vậy N\(\in\){ -16; 2; 4; 22}