DM

Cho hthang ABCD có hai cạnh bên là AD và BC bằng nhau, đường chéo Ac vuông góc với cạnh bên BC. Biết AD = 5a, AC = 12a

a) Tính sinB + cosB/ sinB - cosB

b) tính chiều cao của hthang ABCD

TN
22 tháng 10 2016 lúc 19:41

a) Có AD=BC=5a, AC=12a 
Xét tam giác ABC vuộng tại C=> AB^2 =169a^2 <=> AB= 13a ( đlý Pitago ) 
Xét tam giác ABC vuộng tại C, có: SinABC =12a/13a, CosABC= 5a/13a 
=> ( sin B + cosB )/ (sinB -cosB) = ( 12a/13a + 5a/13a)/(12a/13a - 5a/13a)= 17/7 
b) Trong tam giác ADC, Kẻ AH vuông góc DC 
Trong tam giác ACB, Kẻ CK vuông góc AB 
Có AB//DC ( t/c hình thang) 
mà AD vuông góc DC 
=> AD vuông góc AB (1) 
Tương tự có CK vuông góc DC (2) 
(1)(2) => tứ giác ABCD là hcn ( dhnb hcn) 
=> AD=CK 
Xét tam giác ABC vuông tại C có CK là đường cao AB 
<=> AB.CK= CB.CA 
=> 13a.CK = 5a.12a 
<=> CK= (60/13)a = AH 
Xét tam giác AHC vuông tại H có HC= (144/13)a ( pitago) 
Xét tam giác AHD vuông tại H có HD= (25/13)a ( pitago) 
Mà H nằm giữa DC => DC = HC + HD = 13a 
=> S ABCD= 1/2AH(AB+CD)= 1/2. (60/13)a. (13a +13a)= 60 a^2 (đvdt) 
Chúc bạn học tốt!!!!!!

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
TM
Xem chi tiết
PB
Xem chi tiết
0T
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
HH
Xem chi tiết
DG
Xem chi tiết