HM

Cho hpt

\(\left\{{}\begin{matrix}\left(a-1\right)x+y=a\\x+\left(a-1\right)y=2\end{matrix}\right.\)  có nghiệm duy nhất (x,y)

a.tìm đẳng thức liên hệ giữa x;y ko phụ thuộc vào a

b. tìm giá trị của a thỏa mãn: 6x2 - 17y = 5

 

NT
19 tháng 9 lúc 9:11

a) \(\left\{{}\begin{matrix}\left(a-1\right)x+y=a\\x+\left(a-1\right)y=2\end{matrix}\right.\)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\dfrac{a-1}{1}\ne\dfrac{1}{a-1}\)

\(\Leftrightarrow\left(a-1\right)^2\ne1\left(a\ne1\right)\)

\(\Leftrightarrow a\ne\left\{0;1;2\right\}\)

\(Hpt\Leftrightarrow\left\{{}\begin{matrix}ax-x+y=a\\x+\left(a-1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{x+y}{x-1}\\x+\left(\dfrac{x+y}{x-1}-1\right)y=2\left(a\right)\end{matrix}\right.\)

\(\left(a\right)\Leftrightarrow x+\left(\dfrac{y+1}{x-1}\right)y=2\)

\(\Leftrightarrow x^2-x+y^2+y=2x-2\left(x\ne1\right)\)

\(\Leftrightarrow x^2-3x+y^2+y+2=0\)

Bình luận (0)