Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

cho hpt \(\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\m\left(x+y\right)=1-y\end{matrix}\right.\) để hệ này vô nghiệm đk thích hợp cho tham số m là 

HP
11 tháng 1 2021 lúc 12:11

\(\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\m\left(x+y\right)=1-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\mx+\left(m+1\right)y=1\end{matrix}\right.\)

Nếu \(m=0\), hệ trở thành \(\left\{{}\begin{matrix}4y=2\\y=1\end{matrix}\right.\Rightarrow\) vô nghiệm

\(\Rightarrow m=0\left(tm\right)\)

Nếu \(m=-1\), hệ trở thành \(\left\{{}\begin{matrix}-x+3y=2\\-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow m=-1\left(l\right)\)

Nếu \(m\ne0,m\ne-1\), yêu cầu bài toán thỏa mãn khi \(1=\dfrac{m+4}{m+1}\ne2\)

\(\Rightarrow\) không tồn tại m thỏa mãn

Vậy \(m=0\)

Bình luận (0)

Các câu hỏi tương tự
AS
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết