Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)

Tìm m dể hpt có 1 nghiệm duy nhất \(\left(x;y\right)\) thỏa mãn P=xy đạt GTLN

NH
30 tháng 12 2019 lúc 21:28

Ta có :

\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\mx+x+m^2x-m^3+2m=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\x\left(m+m^2+1\right)=m^3-1\end{matrix}\right.\)

Để hệ pt có nghiệm duy nhất :

\(\Leftrightarrow m^2+m+1>0\)

\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) (luôn đúng)

Khi đó hệ pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=m-1\\y=2-m\end{matrix}\right.\)

Vậy...

Ta có :

\(P=\left(m-1\right)\left(2-m\right)\)

\(=2m-m^2-2+m\)

\(=3m-m^2-2\)

\(=\frac{1}{4}-\left(m-\frac{3}{2}\right)^2\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
KT
Xem chi tiết
KR
Xem chi tiết
AS
Xem chi tiết
KR
Xem chi tiết