AT

Cho hình vuoong ABCD. Một điểm M thuộc cạnh BC, điểm N trên cạnh DC sao cho góc MAN bằng 45 độ. GỌI P,Q lần lượt là giao điểm của đường chéo BD vs AN và AM.

a) CMR tam giác AQB và tam giác PQM đồng dạng

b) CM MP vuông góc vs AN .

TH
23 tháng 5 2022 lúc 21:36

a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\)\(\widehat{AQP}=\widehat{BQM}\).

\(\Rightarrow\)△APQ∼△BMQ (g-g).

\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).

△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)

\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).

b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).

△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.

\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).

Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)

\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)

\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)

\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)

Hay MP⊥AN tại P.

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
BQ
Xem chi tiết
VN
Xem chi tiết
HL
Xem chi tiết
QT
Xem chi tiết
KV
Xem chi tiết
LA
Xem chi tiết
JY
Xem chi tiết
LL
Xem chi tiết