H24

Cho hình vuông ABCD và một điểm E bất kì trên cạnh BC. Kẻ tia Ax vuông góc AE cắt đường thẳng CD tại F. Kẻ trung tuyến AI của tam giác AFE và kéo dài DC tại K. Qua E kẻ đường thẳng song song với AB tại G. CMR:

a) AE = AF 

b) Tứ giác EGFK là hình thoi 

c) tam giác FIK đồng dạng với tam giác FCE, EK= BE+DK và khi điểm E chuyển động trên BC thì chu vi tam giác ECK không đổi 

H24
7 tháng 7 2019 lúc 17:50

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
NL
Xem chi tiết
DV
Xem chi tiết
TP
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
HQ
Xem chi tiết
NH
Xem chi tiết
LB
Xem chi tiết