SS

Cho hình vuông ABCD. Trong hình vuông lấy 1 điểm M sao cho góc MAB=gócMBA= 150. CMR: Tam giác MDC đều

MR
2 tháng 1 2016 lúc 9:59

 Gọi I là trung điểm AB, có MAB là tam giác cân => MI vuông góc AB, IM cắt DC tại K, dể thấy K là trung điểm DC. 
Ta có MDC là tam giác cân, ta chỉ cần cm nó có 1 góc bằng 60o. 
Đặt cạnh của hình vuông là a, có IK=a. 
gọi N là điểm trên IK sao cho góc MAN =15o (N khác I), có AM là phân giác của góc(IAN), theo tính chất phân giác ta có: 
MN / MI = AN / AI (*) 
trong đó: 
AI = a/2 
AN = AI / cos30o = a / √3 
IN=AI*tan30o= a√3/6. thay vào (*) 
MN / MI = (a / √3):(a / 2) = 2 / √3 
=> MN = MI * (2/√3) mà MN = IN - MI 
=> IN - MI = MI* (2/√3) 
thay IN, chuyển vế ta tính được: 
MI = a / (4 + 2 √3) 
=> MK = IK - MI 
=> MK = a - a / (4 + 2√3) 
=> MK = (3+2√3)a / (4 + 2√3) = a√3 / 2 
có tan(MDK)=MK / DK 
=(a√3 / 2) : (a / 2) = √3 
=> góc (MDK) = 60o 
vậy tam giác MDC đều

Sagamoto Sara đúng đó

Bình luận (0)
TH
2 tháng 1 2016 lúc 10:00

Ta lại chọn một điểm N trong hình vuông sao cho góc DAN= góc ADN = 15độ. 
Ta thấy AND=AMB --> AN=AM. tam giác NMA ,có góc NAM=90-15-15=60 và AN=AM nên NMA là tam giác đều.--> AN=NM 
Góc AND=180-15-15=150 độ--> Góc DNM=360-150-60= 150 độ 
Vậy góc AND= góc DNM. 
So sánh 2 tg AND và DNM chúng bằng nhau cạnh góc góc. 
Vậy: AD=DM và góc MDC=90-15-15=60 độ. (dpcm) 

Bình luận (0)