NT

Cho hình vuông ABCd, trên cạnh CD lấy điểm E, tia phân giác góc ABE cắt AD tại K. Cminh: AK + CE = BE?

NL
8 tháng 12 2018 lúc 15:55

trên tia đối của AD lấy N sao cho AN = CE 
ta có: 
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau) 
=> CBE^ = ABN^ (1) 
BK là phân giác của ABE^ nên: 
KBE^ = KBA^ (2) 
(1) + (2) được: 
CBE^ + KBE^ = ABN^ + KBA^ 
=> CBK^ = KBN^ (*) 
mà: CBK^ = BKN^ (**) ( so le trong) 
(*) và (**) => BKN^ = KBN^ => BNK là tam giác cân tại N 
=> NB = NK 
=> NB = AN + AK = CE + AK (3) 
do: Δ BCE = Δ BAN => BE = NB (4) 
(3) và (4) => CE + AK = BE

Bình luận (0)
LV
6 tháng 8 2015 lúc 16:39

ta có: 
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau) 
=> CBE^ = ABN^ (1) 
BK là phân giác của ABE^ nên: 
KBE^ = KBA^ (2) 
(1) + (2) được: 
CBE^ + KBE^ = ABN^ + KBA^ 
=> CBK^ = KBN^ (*) 
mà: CBK^ = BKN^ (**) ( so le trong) 
(*) và (**) => BKN^ = KBN^ => BNK là tam giác cân tại N 
=> NB = NK 
=> NB = AN + AK = CE + AK (3) 
do: Δ BCE = Δ BAN => BE = NB (4) 
(3) và (4) => CE + AK = BE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
li-ke cho minhf nhes bn Nguyễn Thị Thùy Trang

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
GP
Xem chi tiết
NA
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
BT
Xem chi tiết
FM
Xem chi tiết
FM
Xem chi tiết
VL
Xem chi tiết