Cho hình vuông abcd, trên cạnh bc lấy M (M khác B, M khác C). Tia AM cắt tia DC tại E, trên tia DC lấy điểm N sao cho ND = BM. a) C/m tam giác AMN là tam giác vuông cân. b) tia NA cắt đường thẳng CB tại P, đoạn thẳng MN cắt AD tại I. Từ A vẽ đường thẳng vuông góc với MN tại H và cắt cạnh CD tại K. C/m: tam giác ADK đồng dạng tam giác MHK. c) C/m: NDxNE=NCxNK.
Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BCCho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC
cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Trên tia đối MA lấy điểm D từ D kẻ đường thẳng vuông góc với AB, AC lần lượt tại E, F a) c/m tg AEDF là hình vuông. b) c/m EF // BC. c) Qua E kẻ đường thẳng vuông góc với
Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD
a C/m DC vuong BC
b Gọi I là giao điểm EF và BC. C/m AI = 1/2 DB
c Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. C/m MICF là hình thang cân
d Tìm vị trí của E trên AB. để A, I, D thẳng hàng
cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Trên tia đối MA lấy điểm D từ D kẻ đường thẳng vuông góc với AB, AC lần lượt tại E, F a) c/m tg AEDF là hình vuông. b) c/m EF // BC. c) Qua E kẻ đường thẳng vuông góc với MF. c/m \(\widehat{AND}\) = 40o
1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF
2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.
Tính tỷ số diện tích tam giác AND với diện tam giác PMD?
Cho hình vuông ABCD có cạnh bằng a. Trên BC lấy M, trên tia đối của tia DC lấy N sao cho BM = DN. Vẽ AH vuông góc với NM ( H thuộc NM), AH cắt DC tại E. Gọi G là giao điểm của MN với AD
a, CMR tam giác NAM vuông cân bà D, H, B thẳng hàng
b, Tính chu vi tam giác EMC theo a
c, Gọi I là giao điểm của BD với AM, gọi K là giao điểm của EG với AN. CMR: tứ giác AIEK là hình vuông
Cho tam giác ABC vuông tại A . Lấy điểm M bất kì trên AC . Từ C kẻ đường thẳng vuông góc với BM , cắt BM tại D .
a, CMR : Khi M di chuyển AC thì tổng BM.BD + CM . CA có giá trị không đổi .
b, Kẻ DH vuông với BC ( H thuộc BC ) . Gọi P , Q lần lượt là trung điểm của BH và DH . CM : CQ vuông góc với PD .