CP

. Cho hình vuông ABCD, M là một điểm tùy ý trên đường chéo BD. Kẻ ME vuông AB, MF vuông AD .
a) Chứng minh DE=CF .
b) Chứng minh ba đường thẳng DE, BF, CM đồng quy.

AT
23 tháng 6 2021 lúc 21:02

Xét \(\Delta DFM\) vuông tại F có \(\angle FDM=45\Rightarrow\Delta DFM\) vuông cân tại F

\(\Rightarrow DF=FM\)

Vì \(\angle MFA=\angle MEA=\angle EAF=90\Rightarrow AEMF\) là hình chữ nhật

\(\Rightarrow AE=FM=DF\)

Xét \(\Delta DCF\) và \(\Delta ADE:\) Ta có: \(\left\{{}\begin{matrix}AD=CD\\DF=AE\\\angle DAE=\angle CDF=90\end{matrix}\right.\)

\(\Rightarrow\Delta DCF=\Delta ADE\left(c-g-c\right)\Rightarrow DE=CF\)

b) \(\Delta DCF=\Delta ADE\Rightarrow\angle DCF=\angle ADE\)

\(\Rightarrow\angle DCF+\angle DFC=\angle ADE+\angle DFC\Rightarrow\angle ADE+\angle DFC=90\)

\(\Rightarrow DE\bot FC\)

Tương tự chứng minh được: \(BF\bot CE\)

Gọi giao điểm của DE,BF là H \(\Rightarrow H\) là trực tâm tam giác CEF

\(\Rightarrow CH\bot EF\left(1\right)\)

FM cắt CB tại G,CM cắt AD tại I

Dễ dàng chứng minh được DCFG là hình chữ nhật

\(\Rightarrow CG=DF=AE\)

Ta có: \(MG=FG-FM=CD-FD==AD-FD=AF\)

Xét \(\Delta CMG\) và \(\Delta EFA:\) Ta có: \(\left\{{}\begin{matrix}MG=AF\\AE=CG\\\angle CGM=\angle EAF=90\end{matrix}\right.\)

\(\Rightarrow\Delta CMG=\Delta EFA\left(c-g-c\right)\Rightarrow\angle AFE=\angle CMG=\angle FMI\)

\(\Rightarrow\angle AFE+\angle FIM=\angle FMI+\angle FIM\Rightarrow\angle AFE+\angle FIM=90\)

\(\Rightarrow CM\bot EF\left(2\right)\)

Từ (1) và (2) \(\Rightarrow C,H,M\) thẳng hàng \(\Rightarrow\) đpcmundefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
EH
Xem chi tiết
NL
Xem chi tiết
VT
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
ML
Xem chi tiết
VL
Xem chi tiết
HH
Xem chi tiết