1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Cho tam giác ABC cân tại A. Đường thẳng đi qua B song song với AC cắt đường thẳng đi qua C song song với AB tại D.
a) (1 điểm). Chứng minh tứ giác ABDC là hình thoi;
b) (0,75 điểm). Gọi M là điểm đối xứng với A qua C. Chứng minh AD vuông góc với DM;
c) (0,75 điểm). Gọi E là giao điểm của AD và BC, O là giao điểm của CD và BM, F là giao của tia EO và DM. Chứng minh DF = FM;
d) (0,5 điểm). Gọi G là giao điểm của EM và CD. Chứng minh A, G, F thẳng hàng.
Cho tam giác ABC vuông tại A có M là trung tuyến kẻ MD vuông góc AB MF vuông góc AC tại E a) Chứng minh AB là hình chữ nhật b)gọi n là điểm đối xứng M qua n Chứng minh MN là hình thoi c)kẻ tia Cx song song AB cắt đường thẳng DM tại P Chứng minh BP song song CD
Cho tam giác INC ( CI > CN). Đường phân giác kẻ từ C chủa tam giác INC cắt NI tại A. Trên tia đối của tia AN lấy điểm K sao cho AK = AN. Từ K kẻ đường thẳng song song với NC cắt IC tại B. Kẻ AH vuông góc với BC tại H. đường phân giác kẻ từ A của tam giác ABH cắt BH tại E. Gọi M là trung điểm của đoạn thẳng AB. Đường thẳng ME cắt đường thẳng AH tại F. Chứng minh AE song song với CF
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH và đường trung tuyến AD (H,D thuộc BC)
a) Tính độ dài đoạn thẳng BC, AD
b) Chứng minh AH2 = HB.HC
c) Qua A kẻ đương thẳng d vuông góc với AD, qua B kẻ đường thẳng d' vuông góc với BA. Gọi M là giao điểm của d và d', E là hình chiếu của B trên AM. Chứng minh góc ABE = góc BAD và tam giác ABC đồng dạng với tam giác EMB
d) Gọi N là giao điểm của AD và MB, F là giao điểm của DM và AB. Chứng minh E, F, N thẳng hàng.
Cho hình chữ nhật ABCD có AD=10cm ,AB=29cm .Trên CD lấy điểm M sao cho DM=4cm .
a) Chứng minh rằng AM vuông góc với MB
b) Tia phân giác của góc AMB cắt AB tại E . Kẻ đường thẳng d đi qua E
Vuông góc với AB. Đường thẳng d cắt MA và MB lần lượt tại H và K .Đường thẳng AK cắt BH tại N. Chứng minh rằng MN là tia phân giác của góc BMH
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
cho tam giác abc vuông tại a, đường cao ah ( h thuộc bc). kẻ hd vuông góc với ab(d thuộc ab), kẻ he vuông góc với ac(e thuộc ac) gọi o là giao điểm của ah và de.
a)chứng minh tứ giác adhe là hình chữ nhật
b)qua o kẻ đường thẳng song song với ac cắt bc tại i. chứng minh io là tia phân giác của góc hie
c)gọi m là trung điểm của bh,md cắt io tại f. chứng minh tứ giác dief là hình bình hành
Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC. Kẻ BH vuông góc với (d) tại H. a) Chứng minh ∆ABC đồng dạng ∆HAB. b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK =BH CK c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Cho biết AB= 3cm, AC = 4cm, BC = 5cm. Tính độ dài đoạn thẳng AH và diện tích AMBC. %D