PB

Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.

a) Chứng minh tam giác AEF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.

c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông

CT
9 tháng 3 2018 lúc 7:25

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DM
Xem chi tiết
DC
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
TN
Xem chi tiết
GA
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết