DT

Cho hình vuông ABCD, E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE. 

a) Chứng minh tam giác AEF vuông cân. 

b) Gọi I là trung điểm của EF .Chứng minh I thuộc BD. 

c) Lấy điểm K đối xứng với A qua I.Chứng minh tứ giác AEKF là hình vuông.  

UT
26 tháng 12 2021 lúc 11:39

a, Xét 2 tam giác vuông ΔADE và ΔABF có:

AD = AB (ABCD là hình vuông); DE = BF (gt)

⇒ ΔADE = ΔABF (2 cạnh góc vuông)

⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^ 

mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o

⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o

⇒ ˆEAFEAF^ = 90o90o (2)

Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)

b, ABCD là hình vuông ⇒ BA = BC và DA = DC

⇒ BD là đường trung trực của AC (3)

ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền 

⇒ AI = 1212EF

ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền

⇒ CI = 1212EF

⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)

Từ (3) và (4) suy ra: I thuộc BD (đpcm)

d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường

⇒ AEKF là hình bình hành

mà AE = AF và ˆEAFEAF^ = 90o90o

⇒ AEKF là hình vuông (đpcm)

Bình luận (0)