: Cho tam giác ABC vuông tại A có AB = 12 cm, = 500
a) Tính độ dài BC và AC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD, DC, BD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông tại A có AB = 12 cm, acb = 50 độ 0 a) Tính độ dài BC và AC? b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD, DC, BD? (Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông tại A có \(\widehat{B}\) = \(60^0\), BC = 6cm.
a) Tính AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất)
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC
c) Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP\(\perp\)AB,DQ\(\perp\)AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP⊥⊥AB,DQ⊥⊥AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC
Cho tam giác ABC vuông tại A, có đường cao AH, gọi M là trung điểm BC, có AH = 10 cm, BH = 5 cm.
a) Tính độ dài HC, AM.
b) Tính số đo góc HAM, góc AMC. (số đo góc làm tròn đến độ)
c) Gọi I là trung điểm AH, trên tia đối của tia IB lấy điểm E sao cho ME = MB, trên tia đối của tia IC lấy điểm F sao cho MF = MC. Gọi K là giao điểm của BF và CE. Chứng minh EF = 3/2.AH.Sin góc BKC
Cho tam giác ABC vuông tại A có đường cao AH. Biết HB = 9cm, AB = 18cm. Độ dài cạnh AC (Kết quả làm tròn đến chữ số thập phân thứ hai ) xấp xỉ là
Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC( E khác BC). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a, Chứng minh: AI=AE
b, Chứng minh: AE.AK=AD.IK
c, Chứng minh: \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC
d, Chứng minh rằng: \(\dfrac{1}{AE}+\dfrac{1}{AK}=\dfrac{\sqrt{2}}{AM}\)
e, Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.