Ta có: \(MB=\dfrac{1}{4}AB=\dfrac{1}{4}.8=2\left(cm\right).\)
\(AM=AB-BM.\\ =8-2=6\left(cm\right).\)
Xét \(\Delta AMD\) vuông tại A:
\(MD^2=AD^2+AM^2\left(Pytago\right).\\ \Rightarrow MD=\sqrt{AD^2+AM^2}.\\ \Rightarrow MD=\sqrt{8^2+6^2}=10\left(cm\right).\)
\(\Delta DNC:MB//DC\) \((\)cùng \(\perp BC).\)
\(\Rightarrow\dfrac{MB}{DC}=\dfrac{MN}{ND}\left(Talet\right).\\ \Leftrightarrow\dfrac{MB}{DC}=\dfrac{ND-MD}{ND}.\\ \Rightarrow\dfrac{2}{8}=\dfrac{ND-10}{ND}.\\ \Rightarrow\dfrac{1}{4}=\dfrac{ND-10}{ND}.\)
\(\Rightarrow4ND-40-ND=0.\\ \Leftrightarrow3ND=40.\\ \Leftrightarrow ND=\dfrac{40}{3}\left(cm\right).\)
Đúng 0
Bình luận (0)