MC=CD/2=3cm
=>\(BM=\sqrt{6^2+3^2}=3\sqrt{5}\left(cm\right)\)
Xét ΔBMD có \(2R=\dfrac{BM}{sin45^0}=3\sqrt{5}:\dfrac{\sqrt{2}}{2}=3\sqrt{10}\)
hay \(R=\dfrac{3\sqrt{10}}{2}\)
MC=CD/2=3cm
=>\(BM=\sqrt{6^2+3^2}=3\sqrt{5}\left(cm\right)\)
Xét ΔBMD có \(2R=\dfrac{BM}{sin45^0}=3\sqrt{5}:\dfrac{\sqrt{2}}{2}=3\sqrt{10}\)
hay \(R=\dfrac{3\sqrt{10}}{2}\)
Cho tam giác ABC đều có cạnh bằng 6 cm.Tính bán kính của đường tròn ngoại tiếp tam giác đó.
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
Tính bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau
a. Tam giác ABC có 2 cạnh góc vuông là a và b
b. Tam giác ABC vuông cân có cạnh góc vuông bằng a
Cho tam giác đều ABC , cạnh a , H là trực tâm
a) Tâm của đường tròn ngoại tiếp tam giác ABC là điểm nào
b) Tính bán kính của đường tròn đó theo a
c) Gọi K là điểm đối xứng với H qua BC. Xác định vị trí tương đối của điểm K với đường tròn đó
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Cho đường tròn tâm O , bán kính OA=6cm . Gọi H là trung điểm của OA , đường thẳng vuông góc vớ OA tại H cắt đường tròn (O) tại B và C . Kẻ tiếp tuyến với đường tròn (O) tại B , cắt đường thẳng OA tại M.
GIẢ TAM GIÁC OBMC/M TỨ GIÁC OBAC LÀ HÌNH THOIC/M MC LÀ ĐƯỜNG TIẾP TUYỀN CỦA DƯỜNG TRÒN O
Cho nửa đường tròn tâm O đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Gọi M là điểm chính giữa cung BC, E là giao điểm AM vs OC. Chứng minh
a, tứ giác MBOE nội tiếp đường tròn
b, ME=MB
c, CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE
d, tính diện tích tam giác BME theo R
Cho (O) có đường kính AB=2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi E là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AE và MN CMR: MA là tiếp tuyến của đường tròn ngoại tiếp tam giác AMH.
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .