Tam giác vuông có hình dạng như sau :
Tam giác vuông có hình dạng như sau :
Trên các cạnh BC, CD của hình vuông ABCD có AB =1 lần lượt lấy các điểm M và N sao cho MC + CN + MN =2. Gọi P, Q lần lượt là giao điểm của BD với AM và AN. Chứng minh rằng các đoạn thẳng BP, PQ,QD lập thành 3 cạnh của một tam giác vuông
Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm thay đổi trên cạnh BC (M khác B) và N là điểm thay đổi trên cạnh CD (N khác C) sao cho MAN = 450 . Đường chéo BD cắt AM và AN lần lượt tại P và Q. a) Chứng minh tứ giác ABMQ là tứ giác nội tiếp. b) Gọi H là giao điểm của MQ và NP. Chứng minh AH vuông góc với MN.
Cho hình vuông ABCD có độ dài cạnh bằng a. Trên cạnh CB,CD lần lượt lấy điểm M,N sao cho chu vi tam giác CMN là 2a. Gọi giao điểm của đường thẳng BD với các đường thẳng AM,AN lần lượt là E,F. Gọi giao điểm của đường thẳng MF và NE là H
a, Tính số đo góc MAN
b, Chứng minh AH vuông góc với MN
c, Gọi diện tích tam giác AMN, AEF lần lượt là S1,S2. Tính \(\frac{S2}{S1}\)
cho hình vuông ABCD trên các cạnh BC và CD lần lượt lấy các điểm E và F sao cho góc EAF=45 độ. Gọi P và Q theo thứ tự là giao điểm của các đoạn EA, AF với đường chéo BD. chứng minh rằng tam giác AQE vuông cân.
1 Hình vuông ABCD có cạnh AB=a. Gọi M là trung điểm của cạnh BC. Trên cạnh CD ta lấy điểm N sao cho khoảng cách từ đó đến đường thẳng AM bằng độ dài đoạn thẳng DN. Tính độ dài các đoạn thẳng AM, CN, MN
2 Cho tam giác vuông ABC vuông tại B có AB=3a, BC=4a. Ta dựng tam giác ACD vuông cân tại D sao cho D khác phía với B đối vớ đường thẳng AC. Tính độ dài AD,BD
Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?
2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?
3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max
4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max
5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max
6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?
2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?
3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max
4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max
5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max
6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
Bài 4: Cho tam giác ABC vuông tại A có đường cao AH, biết AB=3cm. AC=4cm, trên cạnh AB lấy điểm I sao IA=2IB. Đoạn CI cắt AH tại điểm D. Tính dài đoạn thẳng CD
Bài 5: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM^2=BM^2 + CM^2. Tính số đo góc BMC
Bài 6: Cho hình bình hành ABCD. Trên các cạnh BC và AB ta lấy lần lượt hai điểm M và N sao cho AM=CN. Chứng minh SADC = SCDN từ đó suy ra D cách đều AM và CN
Cho hình vuông ABCD cạnh bằng a, I là trung điểm của cạnh AB. Trên tia đối của tia CD, CB, DC, AD lần lượt lấy các điểm M, N, P, Q sao cho CM=a, CN=2a, DP=2a, AQ=3a
a) CMR tam giác IAD, MCN và DPQ là các tam giác đồng dạng
b) Tam giác MNQ là tam giác gì? Tứ giác MNPQ là hình gì?
c) CMR các đường thẳng ID đi qua trung điểm E và F của NP và MQ
d) CM I là trung điểm của NQ
e) Gọi S là giao điểm của QM và PN, R là trung điểm của PQ. C/m SR, QN và CD đồng quy