A B = A E B C = D E A C = A D ⇒ Δ A B C = Δ A E D c − c − c
Đáp án C
A B = A E B C = D E A C = A D ⇒ Δ A B C = Δ A E D c − c − c
Đáp án C
tam giác abc vuông tại a, phân giác góc b cắt ac tại d, trên cạnh bc lấy e sao cho be=ba. Chứng minh :
a, Δ ABD= Δ EBD
b, DE vuông góc với BC
c, gọi F là giao điểm của ED và AB
Chứng minh ΔABC=Δ EBD
d, CM Δ ADF=Δ EDC
e, CM FC song song với AE
giúp mk với !!!!
Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
cho Δ ABC nhọn (AB <AC ) có ^A = 60 . D là TĐ của cạnh AC . Trên tia AB lấy điểm E / AE = AD . cm
a Δ ADE là Tam giác đều
b Δ DEC là tam giác cân
c CE ⊥ AB
Cho tam giác ABC vuông tại A,tia phân giác góc B cắt cạnh AC tại M.Kẻ MD vuông góc với BC tại D.
a)Chứng minh: góc BMA = góc BMD
b)Gọi E là giao điểm của hai đường thẳng MD và BA Chứng minh:AC=DE
c)Chứng minh: Δ A M E = Δ D M C
d)Kẻ DH ⊥ MC tại H và AK ⊥ ME tại K.Hai tia DH và AK cắt nhau tại N.Chứng minh:MN là phân giác của góc KMH
e)Chứng minh:Ba điểm B,M,N thẳng hàng g)Chứng minh:BN ⊥ AD,BN ⊥ EC
h) Δ ABC thỏa mãn điều kiện gì để Δ NAD là tam giác đều
1 ) Cho Δ ABC , D là trung điểm của AB . Đường thẳng qua A và song song với BC cắt AC tại E , đường thẳng qua E và song song với AB cắt BC tại F . Chứng mình rằng :
a ) AD = EF
b ) Δ ADE = Δ EFC
c ) AE = EC
2 ) Cho Δ ABC , D là trung điểm của AB , E là trung điểm của AE . Vẽ điểm F sao cho E là trung điểm của DF . Chứng minh rằng :
a ) DB = CF
b ) Δ BDC = Δ FCD
c ) DE // BC và DE = 1/2 BC
Cho Δ ABC vuông tại A, có góc ABC = 60°. Tia phân giác của góc B cắt AC tại E. Từ E vẽ EH ⊥ BC (H ∈ BC). a) Chứng minh Δ ABE = Δ HBE. b) Qua H vẽ HK // BE (K ∈ AC). Chứng minh Δ EHK đều. c) HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM=NC
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh.
a, HB = CK. b, Góc AHK = góc AKC. c, HK//DE d, Δ AHE = Δ AKD.
( Vẽ hình giúp mk luôn nh )