NT

cho hình vẽ a, chứng tỏ a//b b, chứng tỏ b vuông góc với c c, tính góc M4, N3

NM
30 tháng 9 2021 lúc 18:59

\(a,\widehat{N_1}++\widehat{N_4}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{N_1}=180^0-105^0=75^0\\ \Rightarrow\widehat{N_1}=\widehat{M_1}\)

Mà 2 góc này ở vị trí so le trong nên \(a//b\)

\(b,\left\{{}\begin{matrix}a//b\\a\perp c\end{matrix}\right.\Rightarrow b\perp c\)

\(c,\widehat{M_4}+\widehat{M_1}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{M_4}=180^0-75^0=105^0\\ \widehat{N_3}+\widehat{N_4}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{N_3}=180^0-105^0=75^0\)

Bình luận (0)
LL
30 tháng 9 2021 lúc 19:00

a) Ta có: \(\widehat{N_1}+\widehat{N_4}=180^0\)(kề bù)

\(\Rightarrow\widehat{N_1}=180^0-\widehat{N_4}=180^0-105^0=75^0\)

\(\Rightarrow\widehat{N_1}=\widehat{M_1}=75^0\)

Mà 2 góc này là 2 góc đồng vị

=> a//b

b) Ta có:

a//b(cmt)

a⊥c(gt)

=> b⊥c(từ vuông góc đến song song)

c) Ta có: \(\widehat{N_3}=\widehat{N_1}=75^0\)(đối đỉnh)

Ta có: \(\widehat{M_4}+\widehat{M_1}=180^0\)(kề bù)

\(\Rightarrow\widehat{M_4}=180^0-\widehat{M_1}=180^0-75^0=105^0\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NY
Xem chi tiết
PQ
Xem chi tiết
DB
Xem chi tiết
PN
Xem chi tiết
NL
Xem chi tiết