PB

Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G₁, G₂, G₃, G₄ lần lượt là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G₁G₂G₃G₄.

A.  2 4

B.  2 18

C.  9 2 32

D.  2 12

CT
4 tháng 8 2018 lúc 16:19

Chọn D

Tứ diện đều ABCD  ⇒ A G 1 ⊥ B C D

Ta có ngay 

Cạnh  C G 1 = B C 3 = 3 ⇒ G 1 A = A C 2 - G 1 C 2 = 6 ⇒ d G 1 ; G 2 G 3 G 4 = 6 3

Lại có  G 2 G 3 M N = A G 2 A M = 2 3 ⇒ G 2 G 3 = 2 3 M N = 1 3 B D = 1

Tương tự GG=1, GG=1 ⇒ ∆ G 2 G 3 G 3  là tam giác đều có cạnh bằng 1

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết