PB

Cho hình tứ diện ABCDAD vuông góc với mặt phẳng (ABC), tam giác ABC có A B = 3 a , A C = 4 a , B C = 5 a . Tính góc giữa hai mặt phẳng (ABC) và (DBC), biết khối tứ diện ABCD có thể tích bằng 24 3 a 3 15 .

A. 30°

B. 45°

C. 60°

D. 90°

CT
3 tháng 1 2019 lúc 10:22

Đáp án A.

Từ dữ liệu đề bài ta thấy  A B 2 + A C 2 = B C 2 ⇒    tam giác ABC vuông tại A.

Trong mặt phẳng A B C  kẻ A H ⊥ B C  tại H.

Ta có D A ⊥ B C A H ⊥ B C D A ∈ D A H ; A H ∈ D A H D A ∩ A H = A ⇒ D H ⊥ B C  (định lý ba đường vuông góc).

Ta có A B C ∩ D B C = B C A H ⊥ B C ; D H ⊥ B C A H ∈ A B C ; D H ∈ D B C ⇒ A B C , D B C ^ = A H D ^ .

Ta có A H = A B . A C B C = 3 a .4 a 5 a = 12 a 5 .

Tam giác ADH vuông tại A.

⇒ tan A H D ^ = D A A H = 3. V A B C D S A B C 12 a 5 = 3.24 3 a 3 15. 1 2 .3 a .4 a 12 a 5 = 3 3

⇒ A H D ^ = 30 °

Vậy ta chọn A.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết